Aqueous phase selective detection of 2,4,6-trinitrophenol using a fluorescent metal-organic framework with a pendant recognition site.
نویسندگان
چکیده
Prompt and selective detection of nitro explosives in the aqueous phase is in high demand to meet homeland security and environmental concerns. Herein we report the chemically stable porous metal organic framework UiO-68@NH2 with a pendant recognition site for selective detection of the nitro-aromatic explosive TNP in the aqueous phase. The pendant Lewis basic amine moieties are expected to selectively interact with TNP via electrostatic interactions and act as recognition sites for TNP. The MOF can detect the presence of TNP in water at a concentration as low as 0.4 ppm with a response time of a few seconds. In addition, both excitation and emission wavelengths of the MOF are in the visible region. The high selectivity was observed even in the presence of competing nitro analytes in the aqueous phase. The quenching constant for TNP was found to be 5.8 × 10(4) M(-1) which is 23 times higher than that for TNT and for RDX, demonstrating superior and selective quenching ability. This unprecedented selectivity is ascribed to electron-transfer and energy-transfer mechanisms as well as electrostatic interactions between TNP and the MOF. An MOF-coated paper strip that we prepared demonstrated fast and selective response to TNP in water, which represents a first step towards a practical application.
منابع مشابه
Signal enhancement of sensing nitroaromatics based on highly sensitive polymer dots.
A new, rapid, sensitive, selective and portable fluorescence detection method for nitroaromatics based on polymer dots (Pdots) had been successfully developed not only in aqueous media but also in the solid state with test strips. The fluorescence quenching rates were proportional to the concentrations of 2,4,6-trinitrophenol (TNP) in the range of 0.2-20.0 μg mL(-1) and p-nitrophenol (PNP) in t...
متن کاملAn amine/imine functionalized microporous MOF as a new fluorescent probe exhibiting selective sensing of Fe3+ and Al3+ over mixed metal ions
Nowadays metal-organic frameworks with multiple luminescent centers are very fascinating as multifunctional luminescent material because of their luminescence properties, which could be systematically tuned by deliberate use of organic ligands and metal ions. In this research, we explored a microporous mixed-ligand MOF for highly selective and sensitive detection of metal ions. A two-fold inter...
متن کاملHighly sensitive and selective fluoride detection in water through fluorophore release from a metal-organic framework
The detection, differentiation and visualization of compounds such as gases, liquids or ions are key challenges for the design of selective optical chemosensors. Optical chemical sensors employ a transduction mechanism that converts a specific analyte recognition event into an optical signal. Here we report a novel concept for fluoride ion sensing where a porous crystalline framework serves as ...
متن کاملOrganic-free colloidal semiconductor nanocrystals as luminescent sensors for metal ions and nitroaromatic explosives.
Exposed surfaces of organic-free colloidal semiconductor nanocrystals act as generic luminescent sensors for multiple analytes. S(2-) capped CdSe/CdSeS/CdS core/gradient-shell/shell nanocrystals are turn-on sensors for Cd(2+) ions (110 pM) in an aqueous medium with physiological pH 7.4. A similar organic-free semiconductor nanocrystal shows luminescence turn-off sensing for 2,4,6-trinitrophenol...
متن کاملEfficient removal of cobalt(II) ion from aqueous solution using amide-functionalized metal-organic framework
In this study, an amide-functionalized metal-organic framework, namely TMU-24 was selected to adsorb Co(II) from wastewater with an adsorption capacity of 500 mg. g-1 in less than 20 minutes in neutral pH (pH=7). The effect of diverse parameters such as adsorbent dosage, competitive ions, and contact time on the adsorption process was investigated to find the optimal amounts of them. Also, the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Dalton transactions
دوره 44 34 شماره
صفحات -
تاریخ انتشار 2015